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A s l i p  v e l o c i t y  method f o r  two-dimensional inconpressible t u r b u l e n t  
I 

boundary l a y e r s  was presented  i n  r e fe rence  1. 

l a y e r  w a s  cha rac t e r i zed  by a l a w  of t h e  w a l l  and l a w  of the wake, and the 

The i n n e r  part of t h e  boundary 
I 

I o u t e r  part w a s  cha rac t e r i zed  !y an  arbitrary eddy v i s c o s i t y  model. In  the 1 .  

p r e s e n t  s tudy  for conpressible flcrws, only  a law of the w a l l  is considered. 

The problem of two-dimensional mres s ih l e  f l w  is treated first; then the 

extens ion  to three-dimensional flow is addressed. 

Tlvo-Dimensional Cmp ressible Flow 

Basic Quat ions  

The qoverninq equat ions  f o r  mress ib le  boundary l a y e r  flow are 

where x and y are the normal and t a n g e n t i a l  coord ina tes ,  u and v are 

the  r e spec t ive  v e l o c i t y  cowonents ,  p is the  dens i ty ,  pe and U are t h e  

d e n s i t y  and f l u i d  speed a t  the  o u t e r  edqe of t h e  boundary l aye r ,  and 

dynamic viscosity.  The sum of t h e  dynamic v i scos i ty  and t h e  t u r b u l e n t  eddy 

v i s c o s i t y  

p is t h e  

is defined as % 

* 
where K is a qene ra l  nondimensional func t ion  of x and y,  and 6 i  is t h e  

i n c w r e s s i b l e  displacement thickness .  

I n  this t rea tment ,  the defect stream funct ion  of Clause r  (ref. 2) is 

used. This func t ion  is defined as 
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where 

The prime denotes d i f ferent iat ion with respect to n8 and the shear stress 

ve loc i ty  u is defined as 
* 

where T~ and pw are the wall shear stress and density.  The houndary layer 

thickness parameter A is defined as 

or 

* * 
u A = U6i 

' 
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Partial d e r i v a t i v e s  w i t h  respect to x and y are of the form 

where t h e  dot denotes  d i f f e r e n t i a t i o n  with respect to 5 .  

Law of t he  Wall 

It is assumed t h a t  the flow is ad iaba t i c ,  and the gas is c a l o r i c a l l y  

perfect. The l a w  of the  wall for t h i s  f lm is obtained w i t h  a t reatment  

similar to that of Van Driest ( r e f .  3) as 

where 7 is the ratio of s p e c i f i c  heats, K and B are the  von Kaman 

cons t an t s ,  and aaw and 

v i s c o s i t y ,  respec t ive ly .  

t y p i c a l l y  eva lua ted  as Pr1l3 , where Pr is t h e  Prandtl number. 'Lhe equat ion  

for the  dens i ty  for t h i s  f l m  is 

waware t h e  ad iaba t i c -wa l l  speed of sound and dynamic 

The quan t i ty  r is the recovery factor, which is 

* 
where Me is the  edqe Mach number. S ince  the  ratio u /aaw is small, t h e  

equat ion  for u can be w r i t t e n  as 

* 
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Note that the lawest  order term i n  this equat ion is the same as the law of the 

wall for i n c c m r e s s i h l e  flcw. 

The rmdimensional  s h e a r  stress v e l o c i t y  ratio is 

* 
U 

Y = E  

and where m ( E )  is defined as 

The Clauser  p re s su re  q r a d i e n t  parameter I3 is de f ined  as 

( 9 )  

where p is t h e  pressure.  'Ihe dot Can be used to rep resen t  t h e  q r a d i e n t  of 

x as  well as 5 s i n c e  U is a func t ion  only of x = 5 .  

An important r e l a t i o n s h i p  for t h e  lowest order form of the stream 
I 

f u n c t i o n  f(5,n) and its d e r i v a t i v e  f is obtained from the law of the 

wall. m a t i o n  ( 8 )  can be w r i t t e n  i n  terms of TI and 5 as 

3 * * 1  u = u {- I n  (Ke,*rl) + 81 + 0 ( lu /aaw] 1 
K 

where t h e  Reynolds number based on the  i n m n p r e s s i b l e  displacement thickness 
* 

6 i ,  t h e  wall properties paw and pwr and the edqe v e l o c i t y  U is 

- 4 -  



The stream function f can be expanded in terms of the small parameter y as 

f = fo + yfl+ . . 

With this expansion and equation (418 equation (12) can be written to lcrwest 

order ass 

I 1  = rl ifo - ;I fO 

This equation pertains throughout the inner region of the boundary layer. 

Governing Equ ation for f, 

The governirq equation for fo is obtained from equation (21, the 

tangential momentum equation. To establish the equation for for the mass flux 

corrponents 

mst be expressed in tern of fo. 

pu and pv and the partial derivatives of u with respect to x and y 

With equations ( 4 )  and (7 ) ,  the u canponent 

of velocity and the density can be expressed to first order in y as 

I 

u = u (1 +yfo I 

With these equations the mass flux pu can be approximated as 

'e 
pW 

I 

pu = peu (1 + y ( 2  - -1) fo 1 

From equations (6) and (14) the derivative au/ax is obtained as 
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I . -=U{l+y[f,------ au 9 1 "e a f o  TI 

ax B P, a s  m o 

I where the nondimensional tangential coordinate s is defined as 

The zero-order approximation for the mass flux conponent pv is obtained fran 

a (pew 
A n  = a (  U) 

p v = - j  + y = -  ax 

Finally, the normal derivative of 

au u y  " - = -  
a Y  A fo 

. .. 

u is 

With equations (15), (161, (17), and (181, the tangential mmnentum equation 

can be written as 

It should be noted that this stream function treatment is patterned after 

that of Mellor ancl Gibson (ref. 4 )  for incompressible equilibrium boundary 

layers. In particular, it is patterned after the lowest-order treatment of 

Mellor and Gibson. 

The three boundary conditions for fo involve the values of f, at the wall 

and in the free stream and the value of the shear stress at the wall. Since 
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With boundary condition (z), this equation can be integrated across the 

boundary layer to obtain 

With this value, the first integral of equation (19) for arbitrary rl is 

written as 

Pe afo Pe I1 'e - - = -  Kfo + [l +2 - B]nf; -fo- 1 
Pw as PW PW 

Note that no assunptions have been mde which limit the arbitrariness of the 

nondimensional viscosity coefficient K. 

Match Fbint Location 

The match point divides the cuter and the inner reqions of the boundary 

layer. 

arbitrary. 

of the wall. 

coefficient of viscosity and the law of the wall pertain. 

stream function f, and its first three derivatives with respect to TI are 

continuous. 

point" would be properly termed a "patch point." 

In the outer part of the boundary layer the viscosity coefficient K is 

In the inner reqion, the flow is qoverned by an enpirical law 

There is one point, the match point, at which both the arbitrary 

At this point the 

Note that in the parlance of asynptotic expansions, the "match 

It is assumed that the flw in the inner reqion and hence at the match 

point is essentially in equilibrium. 

in the inner reqion are evaluated with the law of the wall as 

The quantities ftJ and fo 

1 f"=  - 
0 lcn 
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the mass flux carponent pv nust vanish at the wall8 the defect stream 

function f, must also vanish at the wall: 

The free stream boundary condition is obta,;rec 

inconpressible displacement thickness as 

(20) 

f m  the definition of the 

or 

= -1 
0 8 4  
f 

With equations ( 4 ) ,  (5)# (9)8 and (18 ) ,  the shear s t r e s s  and shear stress at 

the wall can be written as 

I* 2 2  
8 f = Y ’  Pw 2 2  

T = y U peK fo W 

From these equations, it is seen that the shear stress boundary condition is 

I* P” 

n+o Pe 
Limit K fo = -  

’he qoverninq equation for f, has a first inteqral. Equation (19) can be 

written as 
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Thus at the match point the Cpverninq equation (23) can be written as 

1 "e I 

@fofm 1% - -= "e K 1 - {,+ 2- 
"w IC% "W 

Let 

1 "e I A= - + 2 pw @fofm 
K 

and note that 

The governing equation is 

'Ihe solution for the match point is 
1/2 

"e K 1- [ 1-4A - --] 
Ym "w - =  
A 2A 

and relatively weakly on "e K 
-; l%is solution depends stronqly on the parameter 

the function A: 
"W 

Ym "e K "e K 2  2 "e ~3 

A "w 
- = -  -+A(- -) + 2A (- -) e . .  

K "W 
K "W 

K 
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Shear Stress 

The governing equation i n  the inner region can be w r i t t e n  as 

If u and au/ay are  known a t  sane p o i n t  y8 the s h e a r  stress can be determined 

as 

Edqe Velocity Lktermination 

If the total p res su re  a t  the edge of the bounda-ry l a y e r  can be defined,  

it can be used to determine the edge v e l o c i t y  U. 

equat ion a t  edge of the bwndary l a y e r  is 

The t a n g e n t i a l  momentum 

which can he w r i t t e n  as 

dU U -  
dX 

The s o l u t i o n  is 

( 7 - 1 )  u 2 7 - 1  ( T I  1 
a w  P = P t  [ l - r  2 

- 10 - 



I ?  

where pt is the total pressure at the boundary layer edge. 

A second approach is to define the boundary layer edge in tern of the 

deviation of the total enthalpy from the freestream value. 

Solution Alqorithm 

This solution process is for either an iterative solution of the 

viscous-inviscid problem or a marchinq solution of the viscous problem with 

the inviscid solution k m n .  In either case, approximate values for the 

solution u(x,y), v(x,y), 

is knawn. The six steps 

(1) From the turbulence 
* 

U6 

(2) Calculate 

* * Pr 1/3 Pe 
6i = -  I ~ =  I -  

PW 

p(x,y), and p(x,y) are knawn. 

for one iteration are: 

d e l  corrpute the edqe velocity U and the product 

Also, the parameter u* 

* 

iterative ly 

1/2 
1-[1-4A- 'e - 1  K 

K 'm PW - =  
2A A 
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( 4 )  Calculate 

* Ym 2 Pw 

e Pe 
v = B u  - ( l - M ) -  m A 

(5) m u t e  the new solution u(x,y), v(x,y), p(xry), and p(x,y) 

usinq urn and vm as boundary conditions. 

(6) Calculate 

Note that the boundary conditions urn and vm can be applied at the model 

surface as a first approximation. 

The main difficulty with the present rnethod is the need to specify the 

edge velocity U. For hypersonic flw and slender body flow U can be 

replaced with u, 

Cross-Flw Effects 

Initially, at least, it will be assumed that a small crossflow approach 

can be used. Cooke (ref. 5) has shown that the equation for the streamvise 

velocity amportent, measured relative to the velocity vector at the outer edqe 

of the boundary layer, for inconpressihle flcw is independent of cross-flow 

effects and hence is similar to the equation for two-dimensional flow. 

will be assumed that the same is true for compressible flow. 

It 
c 
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I -  

In this treatment, it is assumed that the turning angle near the wall is 

essentially linear with respect to distance from the wall so that it can be 

evaluated by extrapolation. 

wall is supported hy the data of Johnston (ref . 6) and Van Den Berq, Elsenaar, 

Lindhout, and Wesselinq (ref. 7). 

The linear behavior of the turninq angle near the 

An additional arquement for linear extrapolation comes from the results 

of Mellor (ref. 8 )  for two-dimensional, inccmpressible, hiqh Reynolds number 

flow and the three-dimensional extension of Goldberg and Reshotko(ref. 9). 

Both of these treatments shcrw that, to lwest order, the inner layer flaw is 

determined by viscous forces: pressure-gradient forces do not appear. Since 

turning is the result of the interplay of pressure and viscous forces within 

the boundary layer, it is reasonable to assume that turning is carplete by the 

time the inner reqion is reached and only viscous forces remain. 

For purposes of illustration, let x,y, and z be Cartesian boundary layer 

me respective velocity cmponents coordinates with y the normal coordinate. 

are u, v, and w. The turninq atqle + and tanqential velocity utan 

are defined as 

2 2 1/2 = ( u  + w )  -1 w 
(ii) ' "tan 4 = tan 

Let yl and y2 be the two locations imnediately above the match point ymo 

The match point turninq anqle is 

and the law of the wall is expressed in terms of utan as 
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The v e l o c i t y  cmponents  urn and wm, which are needed as s l i p  velocity boundary 

conditions, are obtained from $,, and utanlm w i t h  the equat ions 

Utan,rnCOS +m 

w = u  s i n  6, m tan,m 

* 
The equation €or u is 

Inplementat i on  

Consider a n  x,y, z Car te s i an  coordinate system f i x e d  to t h e  three- 

dimensional conf igu ra t ion  wi th  the x coordinate  i n  the a x i a l  d i r e c t i o n .  Let 

t h e  u n i t  normal to the s u r f a c e  be 
+ +  t -* 
n = I nx+ 1 n,, + k nz 

The flow anqle + w i l l  be measured i n  t h e  tarwent plane ( t h e  plane nom1 

to 1. me anqle + w i l l  be measured from the line where a reference 

plane i n t e r s e c t s  t he  tanqent plane. The re fe rence  plane w i l l  be either t h e  

x y  plane or the  x-z plane,  dependinq upon whether the p r o j e c t i o n  of the  u n i t  
-* vec to r  n on t h e  y-z plane is mre c l o s e l y  a l iqned  w i t h  the u n i t  

v e c t o r s  3 or C 
-b 

The u n i t  vector i n  t h e  d i r e c t i o n  of the p r o j e c t i o n  ot n on the y-z P 

c 

. 

plane is 
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+ + n "2 
+ 2 2 1/2 P ( n  2 + nz)  2 1/2 '1. + n2) 

n = J  

Y 

Thus the d i r e c t i o n  mines 

The cond i t ions  for choosing the  r e fe rence  planes 

and t axes are 

are: 

Use x z  p l a n e  LT 'L < 7 '  Jz, 2 2 1/2 - ( n  + nz)  
Y 

Use x-y plane 4 7  n 
47 < - 2  > 2 ' 2 y  2 1 / 2  

n 

(n  + nz)  2 2 1/2 
Y (n  + nz 1 Y 

x-y Plane as Reference 
+ 

A vector i n  the x-y plane normal to n is 

+ + + +  + t 
e Xy = n x k = l x R n x + ; x i  'L = l n Y  - Jnx 

The u n i t  vector i n  the 

n - + + 
1 = 1  2 2 1/2 

Xy (nx + ny) 

The u n i t  vector normal 

+ 
x-y plane normal to n is 

+ "X 
3 2 1/2 

( n i  + n 1 Y 

to  and n' is 
XY 

2 2 1/2 + + + + nxnz + "y"2 + k' (nx + ny) 
1 = i  x n  = - 1  2 2 1/2 - J 2 2 1/2 (nx + n 1 (nx + ny) Y 
C x y  
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The velocity c a r p n e n t  i n  the x-y plane tangen t  to the s u r f a c e  is 

un v"X (un -vnx) 
2 2 1/2 

- 
2 2 1/2 = 2 2 1/2 (nx + n,) (nx + ny)  

us= t 0 t - 
w- (nx + n,) 

where the v e l o c i t y  vector is 

b = U T  + v$ + w k' 

The velocity merit i n  the d i r e c t i o n  t angen t  to the s u r f a c e  is 
C 

- u n  x z  n - v n n Z  + w (nf + n2)  
WS' f 0 1' = 

C 2 2 1/2 (nx .+ n 1 Y 

The c ross f low angle $ 

t he  v e l o c i t y  vector and t h e  i n t e r s e c t i o n  of the tangent  plane w i t h  t h e  x-y 

plane:  

is defined as the angle i n  t h e  tangent  plane between 

+ w(n: + 1 - un x z  - = t a n  -' { W -1 s 0 = t a n  

a t  'm Let n he the  coord ina te  i n  t he  normal d i r e c t i o n .  The anqle 

t h e  s u r f a c e  is obtained by l i n e a r  e x t r a p o l a t i o n  of the va lues  $1 a t  n1 and $2 a t  n2 : 

"1 - "0 
$2 n2 - n1 

- "2 - "0 - 
'm- n2 - n1 $1 

Now assume t h a t  the n e w  " s l i p  v e l o c i t y "  Uta,,, the anqle $m, and the 

" inne r  l a y e r  t r a n s p i r a t i o n  v e l o c i t y "  V have been determined. 'Ihe va lues  u, n 
vI and w are needed as boundary cond i t ions :  

c 
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The v e l o c i t y  vector can be w r i t t e n  as 

t = ; u + G vn + ;cwc 
X y c  

The Car t e s i an  v e l o c i t y  amponents  are 

2 1/2 
Y (nx + n 1 

V = $ *  J = -  i + n V  - "ynzWc 

X 

2 2 1/2 
?2 

w = t i: = nzvn + (nx + ny) 

x-z Plane as Reference 

Now use  t h e  x-z plane for reference.  A vector i n  t h e  x-z plane normal 

to "n is 

+ + i + *  e = n x ( - 3 )  = -1 x J xz 

The u n i t  vec to r  i n  the 

+ +  + + n - k x J nz = i n z  - knx 
X 

+ 
x z  plane normal to n is 

"X 
2 1/2 - k '  + + nZ 

(nx + nz)  
2 2 1/2 1 = 1  xz (nx + n z )  

The u n i t  vector normal to TXz and n' is 

n n  z y  2 2 1/2 
i 

n n  

(nx + nz)  
- J ("X + 

+ + + + x y  
1 - = i  x n =  1 2 1/2 C xz 
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me velocity carQonent i n  t h e  x-z p l a n e  tangent  to t h e  s u r f a c e  is 

wn (unZ- wnx) 

(nx + nz)  

X - 
- 2  2 1/2 

unZ - 
Us=$.: xz = ( n i  + n z )  2 1/2 ( n t  + nz)  'I2 

+ The veloci ty  mnponent  i n  t h e  1; d i r e c t i o n  tanqent  to t h e  s u r f a c e  is 

L 6 un n - v ( n x  + n z )  + wnzn + X Y  w s = t .  1 - =  2 2 1/2 
C ( n  + n z )  

X 

The crosstlw a n q l e  

the v e l o c i t y  vector and the i n t e r s e c t i o n  of t h e  t a n q e n t  p l a n e  wi th  the x-z 

plane:  

is d e f i n e d  as the arqle i n  t h e  tangent  p l a n e  between 

2 un n - v(n: + n Z + w nzny ~ 

X Y  
W -1 s 

X 
unz - wn + = t a n  = t a n  -' [ 

S 

The v a l u e  of + a t  t h e  s u r f a c e  is d e t e r m i n e d  by e x t r a p o l a t i o n  as before .  

Now assume t h a t  +m and Utan are known. I t  f o l l o w s  that 

m - s i n  Q cos Q rn 'c - 'tan 
- 

"c - "tan 

A l s o  t h e  i n n e r  layer t r a n s p i r a t i o n  v e l o c i t y  Vn is known. 

can be w r i t t e n  as: 

The v e l o c i t y  vec tor  

+ $ = {  u + ; v  + 1 - w  xz c n c c  

The C a r t e s i a n  v e l o c i t y  conponents are: 
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nxTwc 
2 1/2 + n V  + x n  

u = t * l  - "z "c 

(nx + nzf - 2  2 1/2 ( n  + n z )  X 

2 2 1/2 
wC 

= n V - (nx + nz)  
Y n  

V ' b J  

1. 

2. 

3. 

4. 

5. 

6. 
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